Abstract
Emerging and reemerging pathogens are global challenges for public health. The infectious disease COVID‑19 caused by SARS‑ CoV‑2, a newly emerged beta coronavirus is spreading throughout the globe. There is currently no specific treatment nor a vaccine available for the disease, though the pandemic continues to grow, the scientific community is searching eagerly to employ a prophylactic drug that could decrease COVID‑19 spread. As chemoprophylaxis is an acceptable approach in mitigating infectious diseases, discovering an efficient chemoprophylactic agent could be one way to potentially control COVID‑19. There have been several existing drugs repurposing for the treatment and prevention of COVID‑19. Most research efforts are focused on the 4‑aminoquinoline derivative compounds hydroxychloroquine (HCQ) and chloroquine (CQ). A literature search was performed using Google Scholar and PUBMED to find articles about the role of CQ/HCQ as a prophylaxis to COVID‑19. In addition, a review of all the clinical trials registered in clinical trials.gov focusing on HCQ and its role as prophylaxis for COVID‑19 in frontline workers is also included in this review. A total of 59 publications are included, of these 24 are ongoing clinical trials, and 35 publications including pre‑clinical and clinical studies as well as systematic reviews, research letters/ correspondence, opinions, and viewpoints have been included, in the intention to outline the current evidence regarding the benefits and harms of using HCQ/CQ as a prophylactic for COVID‑19 in frontline workers, in addition, to provide an overall picture of the use of these drugs around the world, for this purpose. In conclusion, the literature does not yet present well‑designed clinical studies that demonstrate HCQ/COQ effectiveness in COVID‑19, However, we are in a race against time to find effective treatments and preventive measures against the growing pandemic, considering the repositioning drugs like 4‑aminoquinoline derivatives CQ and HCQ, that shows antiviral efficacy against SARS‑CoV‑2 , which are easily available, affordable, and have a good safety profile, in a resource‑poor country, like the Maldives, will benefit the healthcare system and augment the safety of frontline workers against COVID‑19.
References
Akpovwa, H. (2016). Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochemistry And Function, 34(4), 191-196. doi: 10.1002/cbf.3182
Al-Kofahi, M., Jacobson, P., Boulware, D., Matas, A., Kandaswamy, R., & Jaber, M. et al. (2020). Finding the Dose for Hydroxychloroquine Prophylaxis for COVID-19: The Desperate Search for Effectiveness. Clinical Pharmacology & Therapeutics. doi: 10.1002/cpt.1874
Alshaban, F. (2020). A recommendation for the use of chloroquine, hydroxychloroquine, primaquine, or tafenoquine for prophylaxis against the 2019 novel coronavirus (COVID-19) with note to the ophthalmic considerations. Eye Reports, 6(1), 7-10.
Backer, J., Klinkenberg, D., & Wallinga, J. (2020). Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance, 25(5).
Bhattacharya, R., Chowdhury, S., Mukherjee, R., Nandi, A., Kulshrestha, M., Ghosh, R., & Saha, S. (2020). Pre exposure Hydroxychloroquine use is associated with reduced COVID-19 risk in healthcare workers - a Retrospective cohort. doi: 10.1101/2020.06.09.20116806
Bienvenu, A., Marty, A., Jones, M., & Picot, S. (2020). Systematic review of registered trials of Hydroxychloroquine prophylaxis for COVID-19 health-care workers at the first third of 2020. One Health, 10, 100141. doi: 10.1016/j.onehlt.2020.100141
Borges, M., Castro, L., & Fonseca, B. (2013). Chloroquine use improves dengue-related symptoms. Memórias Do Instituto Oswaldo Cruz, 108(5), 596-599. doi: 10.1590/s0074-02762013000500010
Buonanno, G., Morawska, L., & Stabile, L. (2020). Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: prospective and retrospective applications.
Burkard, C., Verheije, M., Wicht, O., van Kasteren, S., van Kuppeveld, F., & Haagmans, B. et al. (2014). Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner. Plos Pathogens, 10(11), e1004502. doi: 10.1371/journal.ppat.1004502
Cai, J., Sun, W., Huang, J., Gamber, M., Wu, J., & He, G. (2020). Indirect Virus Transmission in Cluster of COVID-19 Cases, Wenzhou, China, 2020. Emerging Infectious Diseases, 26(6), 1343-1345.
Centers for Disease Control and Prevention. (2020, July 8). COVID-19 & IPC Overview. Retrieved from Centers for Disease Control and Prevention: https://www.cdc.gov/coronavirus/2019-ncov/hcp/non-us-settings/overview/index.html
Chatre, C., Roubille, F., Vernhet, H., Jorgensen, C., & Pers, Y. (2018). Cardiac Complications Attributed to Chloroquine and Hydroxychloroquine: A Systematic Review of the Literature. Drug Safety, 41(10), 919-931. doi: 10.1007/s40264-018-0689-4
Chinese Center for Disease Control and Prevention. (2020). The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) — China, 2020. CCDC Weekly, 2(8), 113-122.
Chou, R., Dana, T., Buckley, D., Selph, S., Fu, R., & Totten, A. (2020). Epidemiology of and Risk Factors for Coronavirus Infection in healthcare Workers. Annals Of Internal Medicine, 173(2), 120-136. doi: 10.7326/m20-1632
Cohen, M. (2020). Hydroxychloroquine for the Prevention of COVID-19 — Searching for Evidence. New England Journal Of Medicine. doi: 10.1056/nejme2020388
Czuppon, P., Débarre, F., Gonçalves, A., Tenaillon, O., Perelson, A., Guedj, J., & Blanquart, F. (2020). Predicted success of prophylactic antiviral therapy to block or delay SARS-CoV-2 infection depends on the drug’s mechanism of action. doi: 10.1101/2020.05.07.20092965
D, C., M, T., F, R., V, D., M, A., P, P., et al. (2020). The early phase of the COVID-19 outbreak in Lombardy, Italy. Milano.
Day, M. (2020). COVID-19: four fifths of cases are asymptomatic, China figures indicate. BMJ, 1.Dcruz, M. (2020). The ICMR bulletin on targeted hydroxychloroquine prophylaxis for COVID-19: Need to interpret with caution. Indian Journal Of Medical Ethics, 05(02), 100-102. doi: 10.20529/ijme.2020.040
European Centre for Disease Prevention and Control. (2020). Epidemiology of COVID‑19. Retrieved from European Centre for Disease Prevention and Control: https://www.ecdc.europa.eu/en/COVID-19/latest-evidence/epidemiology
Fantini, J., Di Scala, C., Chahinian, H., & Yahi, N. (2020). Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. International Journal Of Antimicrobial Agents, 55(5), 105960. doi: 10.1016/j.ijantimicag.2020.105960
Ferreira, A., Oliveira-e-Silva, A., & Bettencourt, P. (2020). Chronic treatment with hydroxychloroquine and SARS‑CoV‑2 infection. doi: 10.1101/2020.06.26.20056507
Galvis, V., Spinelli, F., Tello, A., Sossa, C., Higuera, J., & Gómez, E. et al. (2020). Hydroxychloroquine as Prophylaxis for Coronavirus SARS-CoV-2 Infection: Review of the Ongoing Clinical Trials. Archivos De Bronconeumología. doi: 10.1016/j.arbres.2020.05.008
Gan, W., Lim, J., & Koh, D. (2020). Preventing Intra-hospital Infection and Transmission of Coronavirus Disease 2019 in Health-care Workers. Safety And Health At Work, 11(2), 241-243. doi: 10.1016/j.shaw.2020.03.001
Ganyani, T., Kremer, C., Chen, D., Torneri, A., Faes, C., Wallinga, J., & Hens, N. (2020). Estimating the generation interval for COVID‑19 based on symptom onset data.
Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioScience Trends, 14(1), 72-73.
Gonçalves, A., Bertrand, J., Ke, R., Comets, E., de Lamballerie, X., & Malvy, D. et al. (2020). Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load. CPT: Pharmacometrics & Systems Pharmacology. doi: 10.1002/psp4.12543
Haeusler, I. L., Chan, X. H. S., Guérin, P. J., & White, N. J. (2018). The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: a systematic review. BMC Medicine, 16(1), 200. https://doi.org/10.1186/s12916-018-1188-2
Han, Y., Pham, H., Xu, H., Quan, Y., & Mesplède, T. (2019). Antimalarial drugs and their metabolites are potent Zika virus inhibitors. Journal Of Medical Virology, 91(7), 1182-1190. doi: 10.1002/jmv.25440
Hao, W., Ma, B., Li, Z., Wang, X., Gao, X., & Li, Y. et al. (2020). Binding of the SARS‑CoV‑2 Spike Protein to Glycans. doi: 10.1101/2020.05.17.100537
Hernandez, A., Roman, Y., Pasupuleti, V., Barboza, J., & White, C. (2020). Hydroxychloroquine or Chloroquine for Treatment or Prophylaxis of COVID-19: A Living Systematic Review. Annals Of Internal Medicine. doi: 10.7326/m20-2496
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., & Erichsen, S. et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280.e8. doi: 10.1016/j.cell.2020.02.052
Holshue, M., DeBolt, C., Lindquist, S., Lofy, K., Wiesman, J., Bruce, H., . . . Pillai, S. (2020). First Case of 2019 Novel Coronavirus in the United States. New England Journal of Medicine, 382(10), 929-936.
Jacobson, J., Bosinger, S., Kang, M., Belaunzaran-Zamudio, P., Matining, R., & Wilson, C. et al. (2016). The Effect of Chloroquine on Immune Activation and Interferon Signatures Associated with HIV-1. AIDS Research And Human Retroviruses, 32(7), 636-647. doi: 10.1089/aid.2015.0336
Jha, S., Soni, A., Siddiqui, S., Batra, N., Goel, N., Dey, S., ... & Naithani, R. (2020). Prevalence of Flu-like Symptoms and COVID-19 in Healthcare Workers From India. The Journal of the Association of Physicians of India, 68(7), 27-29.
Jiehao, C., Jin, X., Daojiong, L., Zhi, Y., Lei, X., & Zhenghai, Q. et al. (2020). A Case Series of Children With 2019 Novel Coronavirus Infection: Clinical and Epidemiological Features. Clinical Infectious Diseases. doi: 10.1093/cid/ciaa198
Keyaerts, E., Vijgen, L., Maes, P., Neyts, J., & Ranst, M. (2004). In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochemical And Biophysical Research Communications, 323(1), 264-268. doi: 10.1016/j.bbrc.2004.08.085
Kwiek, J., Haystead, T., & Rudolph, J. (2004). Kinetic Mechanism of Quinone Oxidoreductase 2 and Its Inhibition by the Antimalarial Quinolines†. Biochemistry, 43(15), 4538-4547. doi: 10.1021/bi035923w
Lamballerie, X., Boisson, V., Reynier, J., Enault, S., Charrel, R., & Flahault, A. et al. (2008). On Chikungunya Acute Infection and Chloroquine Treatment. Vector‑Borne And Zoonotic Diseases, 8(6), 837-840. doi: 10.1089/vbz.2008.0049
Landewe, r., miltenburg, a., verdonk, m., verweij, c., breedveld, f., daha, m., & dijkmans, b. (2008). Chloroquine inhibits T cell proliferation by interfering with IL-2 production and responsiveness. Clinical & Experimental Immunology, 102(1), 144-151. doi: 10.1111/j.1365-2249.1995.tb06648.x
Lauer, S., Grantz, K., Bi, Q., Jones, F., Zheng, Q., Meredith, H., . . . Lessler, J. (2020). The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine, 172(9), 577-582.
Li, Y., Qian, H., Hang, J., Chen, X., Hong, L., Liang, P., . . . Kang, M. (2020). Evidence for probable aerosol transmission of SARS‑CoV‑2 in a poorly ventilated restaurant.
Liao, W., Schones, D., Oh, J., Cui, Y., Cui, K., & Roh, T. et al. (2008). Priming for T helper type 2 differentiation by interleukin 2–mediated induction of interleukin 4 receptor α-chain expression. Nature Immunology, 9(11), 1288-1296. doi: 10.1038/ni.1656
Liu, Y., Gayle, A., Wilder-Smith, A., & Rocklöv, J. (2020). The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of Travel Medicine, 27(2), 1-4.
Liu, Y., Yan, L., Wan, L., Xiang, T., Le, A., & Liu, J. et al. (2020). Viral dynamics in mild and severe cases of COVID-19. The Lancet Infectious Diseases, 20(6), 656-657. doi: 10.1016/s1473-3099(20)30232-2
Looareesuwan, S., White, N., Chanthavanich, P., Edwards, G., Nicholl, D., Bunch, C., & Warrell, D. (1986). Cardiovascular toxicity and distribution kinetics of intravenous chloroquine. British Journal Of Clinical Pharmacology, 22(1), 31-36. doi: 10.1111/j.1365-2125.1986.tb02876.x
Mathian, A., Mahevas, M., Rohmer, J., Roumier, M., Cohen-Aubart, F., Amador-Borrero, et al. (2020). Clinical course of coronavirus disease 2019 (COVID-19) in a series of 17 patients with systemic lupus erythematosus under long-term treatment with hydroxychloroquine. Annals of the Rheumatic Diseases, 79(6), 837-839.
Mehra, M., Desai, S., Ruschitzka, F., & Patel, A. (2020). RETRACTED: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. The Lancet. doi: 10.1016/s0140-6736(20)31180-6
Miller, S., Nazaroff, W., Jimenez, J., Boerstra, A., Buonanno, G., Dancer, S. et al. (2020). Transmission of SARS‑CoV‑2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event.
Ministry of Health. (2020). Health Protection Agency COVID-19 Statistics Dashboard. Retrieved July 22, 2020, from COVID-19 Response: https://COVID-19.health.gov.mv/dashboard/
Ministry Health and Family Welfare. (2020). Advisory on the use of hydroxy‑chloroquine as prophylaxis for SARS‑CoV‑2 infection. New Delhi.
Mitjà, O., & Clotet, B. (2020). Use of antiviral drugs to reduce COVID-19 transmission. The Lancet Global Health, 8(5), 639-640.
Moiseev, S., Avdeev, S., Brovko, M., Novikov, P., & Fomin, V. (2020). Is there a future for hydroxychloroquine/chloroquine in prevention of SARS-CoV-2 infection (COVID-19)?. Annals Of The Rheumatic Diseases, annrheumdis-2020-217570. doi: 10.1136/annrheumdis-2020-217570
Murray, S., Down, C., Boulware, D., Stauffer, W., Cavert, W., & Schacker, T. et al. (2010). Reduction of Immune Activation with Chloroquine Therapy during Chronic HIV Infection. Journal Of Virology, 84(22), 12082-12086. doi: 10.1128/jvi.01466-10
National Institues of Health. (2020, June 20). NIH halts clinical trial of hydroxychloroquine. Retrieved from National Institues of Health: https://www.nih.gov/news-events/news-releases/nih-halts-clinical-trial-hydroxychloroquine
Nguyen, L., Drew, D., Joshi, A., Guo, C., Ma, W., & Mehta, R. et al. (2020). Risk of COVID‑19 among frontline healthcare workers and the general community: a prospective cohort study. doi: 10.1101/2020.04.29.20084111
Oscanoa, T., Romero-Ortuno, R., Carvajal, A., & Savarino, A. (2020). A pharmacological perspective of Chloroquine in SARS-CoV-2 infectionInternational Journal Of Antimicrobial Agents, 106078. doi: 10.1016/j.ijantimicag.2020.106078
Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., & Ren, L. et al. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11(1). doi: 10.1038/s41467-020-15562-9
Pan, X., Chen, D., Xia, Y., Wu, X., Li, T., Ou, X., . . . Liu, J. (2020). Asymptomatic cases in a family cluster with SARS-CoV-2 infection. The Lancet Infectious Diseases, 20(4), 410-411.
Panda, S., Chatterjee, P., Anand, T., Singh, K., Rasaily, R., & Singh, R. et al. (2020). Healthcare workers & SARS-CoV-2 infection in India: A case-control investigation in the time of COVID-19. Indian Journal Of Medical Research, doi: 10.4103/ijmr.ijmr_2234_20
Paton, N., Lee, L., Xu, Y., Ooi, E., Cheung, Y., & Archuleta, S. et al. (2011). Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial. The Lancet Infectious Diseases, 11(9), 677-683. doi: 10.1016/s1473-3099(11)70065-2
Pereira, B. (2020). Challenges and cares to promote rational use of chloroquine and hydroxychloroquine in the management of coronavirus disease 2019 (COVID-19) pandemic: a timely review. Journal Of Toxicology And Environmental Health, Part B, 23(4), 177-181. doi: 10.1080/10937404.2020.1752340
Piconi, S., Parisotto, S., Rizzardini, G., Passerini, S., Terzi, R., & Argenteri, B. et al. (2011). Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy–treated immunologic nonresponders. Blood, 118(12), 3263-3272. doi: 10.1182/blood-2011-01-329060
Picot, S., Marty, A., Bienvenu, A., Blumberg, L., Dupouy-Camet, J., & Carnevale, P. et al. (2020). Coalition: Advocacy for prospective clinical trials to test the post-exposure potential of hydroxychloroquine against COVID-19. One Health, 9, 100131. doi: 10.1016/j.onehlt.2020.100131.
Principi, N., & Esposito, S. (2020). Chloroquine or hydroxychloroquine for prophylaxis of COVID-19. The Lancet Infectious Diseases.
Ran, L., Chen, X., Wang, Y., Wu, W., Zhang, L., & Tan, X. (2020). Risk Factors of Healthcare Workers with Corona Virus Disease 2019: A Retrospective Cohort Study in a Designated Hospital of Wuhan in China. Clinical Infectious Diseases.doi: 10.1093/cid/ciaa287
Roden, D., Harrington, R., Poppas, A., & Russo, A. (2020). Considerations for Drug Interactions on QTc in Exploratory COVID-19 Treatment. Circulation, 141(24). doi: 10.1161/circulationaha.120.047521
Rodrigo, C., Fernando, S., & Rajapakse, S. (2020). Clinical evidence for repurposing chloroquine and hydroxychloroquine as antiviral agents: a systematic review. Clinical Microbiology And Infection, 26(8), 979-987. doi: 10.1016/j.cmi.2020.05.016
Rodriguez-Valero, N., Vera, I., Torralvo, M., De Alba, T., Ferrer, E., & Camprubi, D. et al. (2020). Malaria prophylaxis approach during COVID-19 pandemic. Travel Medicine And Infectious Disease, 101716. doi: 10.1016/j.tmaid.2020.101716
Ruiz-Irastorza, G., Ramos-Casals, M., Brito-Zeron, P., & Khamashta, M. A. (2010). Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Annals of the Rheumatic Diseases, 69(01), 20LP – 28. https://doi.org/10.1136/ard.2008.101766
Sardana, K., Mathachan, S., Deepak, D., Khurana, A., & Sinha, S. (2020). Cutaneous side effects of hydroxychloroquine in healthcare workers in a COVID referral hospital – implications for clinical practice. Journal Of Dermatological Treatment, 1-3. doi: 10.1080/09546634.2020.1781041
Savarino, A., Boelaert, J., Cassone, A., Majori, G., & Cauda, R. (2003). Effects of chloroquine on viral infections: an old drug against today’s diseases. The Lancet Infectious Diseases, 3(11), 722-727. doi: 10.1016/s1473-3099(03)00806-5
Savarino, A., Di Trani, L., Donatelli, I., Cauda, R., & Cassone, A. (2006). New insights into the antiviral effects of chloroquine. The Lancet Infectious Diseases, 6(2), 67-69. doi: 10.1016/s1473-3099(06)70361-9
Shah, S., Das, S., Jain, A., Misra, D., & Negi, V. (2020). A systematic review of the prophylactic role of chloroquine and hydroxychloroquine in coronavirus disease‐19 (COVID‐19). International Journal Of Rheumatic Diseases, 23(5), 613-619. doi: 10.1111/1756-185x.13842
Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS‑CoV‑2. Proceedings Of The National Academy Of Sciences, 117(21), 11727-11734. doi: 10.1073/pnas.2003138117
Shibata, M., Aoki, H., Tsurumi, T., Sugiura, Y., Nishiyama, Y., Suzuki, S., & Maeno, K. (1983). Mechanism of Uncoating of Influenza B Virus in MDCK Cells: Action of Chloroquine. Journal Of General Virology, 64(5), 1149-1156. doi: 10.1099/0022-1317-64-5-1149
Shiryaev, S., Mesci, P., Pinto, A., Fernandes, I., Sheets, N., & Shresta, S. et al. (2017). Repurposing of the anti-malaria drug chloroquine for Zika Virus treatment and prophylaxis. Scientific Reports, 7(1). doi: 10.1038/s41598-017-15467-6
Sperber, K., Chiang, G., Chen, H., Ross, W., Chusid, E., & Gonchar, M. et al. (1997). Comparison of hydroxychloroquine with zidovudine in asymptomatic patients infected with human immunodeficiency virus type 1. Clinical Therapeutics, 19(5), 913-923. doi: 10.1016/s0149-2918(97)80045-8
Sperber, K., Louie, M., Kraus, T., Proner, J., Sapira, E., & Lin, S. et al. (1995). Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1. Clinical Therapeutics, 17(4), 622-636. doi: 10.1016/0149-2918(95)80039-5
Spinelli, F. R., Ceccarelli, F., Di Franco, M., & Conti, F. (2020). To consider or not antimalarials as a prophylactic intervention in the SARS-CoV-2 (COVID-19) pandemic. Annals of the rheumatic diseases, 79(5), 666-667.
Spinelli, F., Ceccarelli, F., Di Franco, M., & Conti, F. (2020). Response to ‘Is there a future for hydroxychloroquine/chloroquine in prevention of SARS-CoV-2 infection (COVID-19)?’ Annals of the rheumatic diseases.
Surendra, K., Harsh, G., Chandrashekhar, B., Lal, M., Manoj, M., Ravindra, J., & Anil, K. (2020). Role of hydroxychloroquine and chloroquine in prophylaxis against COVID-19 review study. World Journal Of Advanced Research And Reviews, 6(2), 170-175. doi: 10.30574/wjarr.2020.6.2.0148
Tahiri Joutei Hassani, R., & Bennis, A. (2020). Hydroxychloroquine as antiviral prophylaxis for exposed caregivers to COVID-19: An urgent appraisal is needed. Journal Of Infection And Public Health, 13(6), 865-867. doi: 10.1016/j.jiph.2020.05.005
Taylor, W. R. J., & White, N. J. (2004). Antimalarial Drug Toxicity. Drug Safety, 27(1), 25–61. https://doi.org/10.2165/00002018-200427010-00003
Tilangi, P., Desai, D., Khan, A., & Soneja, M. (2020). Hydroxychloroquine prophylaxis for high-risk COVID-19 contacts in India: a prudent approach. The Lancet Infectious Diseases.
Tricou, V., Minh, N., Van, T., Lee, S., Farrar, J., & Wills, B. et al. (2010). A Randomized Controlled Trial of Chloroquine for the Treatment of Dengue in Vietnamese Adults. Plos Neglected Tropical Diseases, 4(8), e785. doi: 10.1371/journal.pntd.0000785
Tsai, W., Nara, P., Kung, H., & Oroszlan, S. (1990). Inhibition of Human Immunodeficiency Virus Infectivity by Chloroquine. AIDS Research And Human Retroviruses, 6(4), 481-489. doi: 10.1089/aid.1990.6.481
University of Oxford. (2020, June 05). No clinical benefit from use of hydroxychloroquine in hospitalised patients with COVID‑19. Retrieved from University of Oxford News and Events: https://www.ox.ac.uk/news/2020-06-05-no-clinical-benefit-use-hydroxychloroquine-hospitalised-patients-COVID-19
Ursing, J., Kofoed, P., Rodrigues, A., Bergqvist, Y., & Rombo, L. (2008). Chloroquine Is Grossly Overdosed and Overused but Well Tolerated in Guinea-Bissau. Antimicrobial Agents And Chemotherapy, 53(1), 180-185. doi: 10.1128/aac.01111-08
US National Library of Medicine. (2020). Chloroquine/ Hydroxychloroquine Prevention of Coronavirus Disease (COVID‑19) in the Healthcare Setting (COPCOV). Retrieved from Clinical Trials: https://clinicaltrials.gov/ct2/show/NCT04303507?term=hydroxychloroquine+prophylaxis&recrs=ab&cond=COVID-19&draw=2
US National Library of Medicine. (2020). Healthcare Worker Exposure Response and Outcomes of Hydroxychloroquine (HERO‑HCQ). Retrieved from Clinical Trials: https://clinicaltrials.gov/ct2/show/NCT04334148?term=hydroxychloroquine+prophylaxis&recrs=ab&cond=COVID-19&draw=7&rank=48
US National Library of Medicine. (2020). hydroxychloroquine prophylaxis | Recruiting, Not yet recruiting Studies | COVID‑19. Retrieved from Clinical Trials: https://clinicaltrials.gov/ct2/results?recrs=ab&cond=COVID-19&term=hydroxychloroquine+prophylaxis+&cntry=&state=&city=&dist=
Vigerust, D., & McCullers, J. (2007). Chloroquine is effective against influenza A virus in vitro but not in vivo. Influenza And Other Respiratory Viruses, 1(5-6), 189-192. doi: 10.1111/j.1750-2659.2007.00027.x
Vincent, M., Bergeron, E., Benjannet, S., Erickson, B., Rollin, P., & Ksiazek, T. et al. (2005). Virology Journal, 2(1), 69. doi: 10.1186/1743-422x-2-69
Wei, W., Li, Z., Chiew, C., Yong, S., Toh, M., & Lee, V. (2020, April 10). Presymptomatic Transmission of SARS‑CoV‑2 — Singapore, January 23–March 16, 2020. Morbidity and Mortality Weekly Report (MMWR), 69(14), 411-415. Retrieved from Center for Disease Control and Prevention: https://www.cdc.gov/mmwr/volumes/69/wr/mm6914e1.htm#suggestedcitation
White, N., Watson, J., Hoglund, R., Chan, X., Cheah, P. Y., & Tarning, J. (2020). COVID-19 prevention and treatment: a critical analysis of chloroquine and hydroxychloroquine clinical pharmacology.
World Health Organization. (2020). Coronavirus disease (COVID-19) Situation Report – 166. NA: World Health Organization.
World Health Organization. (2020). Emergencies preparedness, response. Retrieved from World Health Organization: https://www.who.int/csr/don/02-jul-2020-mers-saudi-arabia/en/
World Health Organization. (2020). International travel and health. Retrieved from World Health Organization: https://www.who.int/ith/diseases/sars/en/
World Health Organization. (2020, March 29). Modes of transmission of virus causing COVID‑19: implications for IPC precaution recommendations Scientific Brief.Retrieved from World Health Organization: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-COVID-19-implications-for-ipc-precaution-recommendations
Xue, J., Moyer, A., Peng, B., Wu, J., Hannafon, B., & Ding, W. (2014). Chloroquine Is a Zinc Ionophore. Plos ONE, 9(10), e109180. doi: 10.1371/journal.pone.0109180
Yam, J., & Kwok, A. (2006). Ocular toxicity of hydroxychloroquine. Hong Kong Med Journal, 12(4), 294-304.
Yogasundaram, H., Putko, B., Tien, J., Paterson, D., Cujec, B., Ringrose, J., & Oudit, G. (2014). Hydroxychloroquine-Induced Cardiomyopathy: Case Report, Pathophysiology, Diagnosis, and Treatment. Canadian Journal Of Cardiology, 30(12), 1706-1715. doi: 10.1016/j.cjca.2014.08.016
Zhang, Y., Chen, C., Zhu, S., Shu, C., Wang, D., Song, J., et al. (2020). Isolation of 2019-nCoV from a Stool Specimen of a Laboratory-Confirmed Case of the Coronavirus Disease 2019 (COVID-19). China CDC Weekly, 2(8), 123-124.
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., & Liu, Z. et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229), 1054-1062. doi: 10.1016/s0140-6736(20)30566-3