Chemotherapy-Induced Opportunistic Infection Among Cancer Patients Treated in the Oncology Unit of the Main Tertiary Hospital in the Maldives

Authors

  • AMINATH MIRUSA The Maldives National University Author
  • MARIYAM NASMA IBRAHIM The Maldives National University Author
  • AMINATH SAMHA The Maldives National University Author
  • ASHFA ISMAIL The Maldives National University Author
  • AMINATH RAMIYA MOHAMED The Maldives National University Author
  • MOHAMED AMRU AHMED Indira Gandhi Memorial Hospital, Male’, Maldives Author
  • RAZANA FAIZ The Maldives National University Author
  • SHAIK SYED ALI PAKEER The Maldives National University Author

DOI:

https://doi.org/10.62338/q4gwha68

Keywords:

Cancer, Chemotherapy, Opportunistic Infections, Neutropenia

Abstract

This study aimed to determine the significant relationship between cytotoxic chemotherapy and opportunistic infections (OIs) in cancer patients. This cross-sectional study used census sampling to include 101 patients receiving chemotherapy at Indira Gandhi Memorial Hospital, Maldives, from 1 January 2022 to 30 November 2023. Data were analyzed using SPSS version 29, with Pearson’s chi-squared test used to assess associations between OIs and clinical variables. No significant association was found with demographics or comorbidities. However, OIs were significantly associated with neutropenia, advanced cancer stage, combined chemotherapy increased number of cycles, prolonged treatment duration, and use of invasive devices. Neutropenia occurred in 42.57% (n=43) of patients, and 15.84% (n=16) developed OIs during the nadir period. Bacterial infections were most common, with Klebsiella pneumoniae being the predominant pathogen. Theses findings highlight the importance of monitoring immunosuppression, treatment intensity, and procedural risks to reduced OIs in patients undergoing chemotherapy.

References

Alshammari, E. (2019). Semi-mechanistic modelling of neutropenia. International Journal of Research in Pharmaceutical Sciences, 10(2), 1157–1160. https://doi.org/10.26452/ijrps.v10i2.397

Anazoeze, M., Sunday, O., Obike, I., Awele, C., & Kenechi, M. (2015). Comparison of absolute neutrophil to CD4 lymphocyte values as a marker of immunosuppression in cancer patients on cytotoxic chemotherapy. African Health Sciences, 15(2), 581–589. https://doi.org/10.4314/ahs.v15i2.34

Anjali, K., Arun, A. B., Bastian, T., Rudrapathy, P., Selvamani, M., & Adarsh, H. (2020). Oral microbial profile in oral cancer patients before and after radiation therapy in a cancer care center –A prospective study. Journal of Oral and Maxillofacial Pathology, 24(1), 117. https://doi.org/10.4103/jomfp.jomfp_213_19

Badr, M., Hassan, T., Sakr, H., Karam, N., Rahman, D. A., Shahbah, D., Zakaria, M., & Fehr, S. (2016). Chemotherapy-induced neutropenia among pediatric cancer patients in Egypt: Risks and consequences. Molecular and Clinical Oncology, 5, 300–306.

Barbor, M. (2015). Managing high-risk patients with febrile neutropenia. The ASCO Post. https://ascopost.com/issues/september-25-2015/managing-high-risk-patients-with-febrile-neutropenia/

Bendall, L. J., & Bradstock, K. F. (2014). G-CSF: From granulopoietic stimulant to bone marrow stem cell mobilizing agent. Cytokine & Growth Factor Reviews, 25(4), 355–367. https://doi.org/10.1016/j.cytogfr.2014.07.011

Berteșteanu, Ș., Grigore, R., Nicolaescu, A., & Cojocărița-Condeescu, M. (2020). HPV-positive oral squamous cell carcinoma. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.90954

Bohlius, J., Reiser, M., Schwarzer, G., & Engert, A. (2003). Impact of granulocyte colony-stimulating factor (CSF) and granulocyte–macrophage CSF in patients with malignant lymphoma: A systematic review. British Journal of Haematology, 122(3), 413–423. https://doi.org/10.1046/j.1365-2141.2003.04450.x

Brahmer, J. R., Dahlberg, S. E., Gray, R. J., Schiller, J. H., Perry, M. C., Sandler, A., & Johnson, D. H. (2011). Sex differences in outcome with bevacizumab therapy: Analysis of patients with advanced-stage non-small cell lung cancer treated with or without bevacizumab in combination with paclitaxel and carboplatin in the Eastern Cooperative Oncology Group Trial 4599. Journal of Thoracic Oncology, 6(1), 103–108. https://doi.org/10.1097/JTO.0b013e3181fa8efd

Callender, D. L. (1999). Antibiotic prophylaxis in head and neck oncologic surgery: The role of Gram-negative coverage. International Journal of Antimicrobial Agents, 12, S21–S27. https://doi.org/10.1016/s0924-8579(99)00088-6

Cancer chemotherapy - StatPearls - NCBI bookshelf. (2023, February 27). National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK564367/

Crombag, M. R. B. S., Koolen, S. L. W., Wijngaard, S., Joerger, M., Dorlo, T. P. C., van Erp, N. P., … Huitema, A. D. R. (2019). Does older age lead to higher risk for neutropenia in patients treated with paclitaxel? Pharmaceutical Research, 36(12). https://doi.org/10.1007/s11095-019-2697-1

Da Silva, R., & Casella, T. (2022). Healthcare-associated infections in patients who are immunosuppressed due to chemotherapy treatment: A narrative review. Journal of Infection in Developing Countries, 16(12), 1784–1795. https://doi.org/10.3855/jidc.16495

Decoy exosomes offer protection against chemotherapy‐induced toxicity. Advanced Science, 9(32). https://doi.org/10.1002/advs.202203505

Delgado, A., & Guddati, A. K. (2021). Infections in hospitalized cancer patients. World Journal of Oncology. https://www.wjon.org/index.php/WJON/article/view/1410

Fan, M., Li, H., Shen, D., Wang, Z., Liu, H., Zhu, D., Wang, Z., Li, L., Popowski, K. D., Ou, C., Zhang, K., Zhang, J., Cheng, K., & Li, Z. (2022).

Fowler, H., Belot, A., Ellis, L., Maringe, C., Luque-Fernandez, M. A., Njagi, E. N., Navani, N., Sarfati, D., & Rachet, B. (2020). Comorbidity prevalence among cancer patients: A population-based cohort study of four cancers. BMC Cancer, 20(1). https://doi.org/10.1186/s12885-019-6472-9

Hashiguchi, Y., Kasai, M., Fukuda, T., Ichimura, T., Yasui, T., & Sumi, T. (2015). Chemotherapy-induced neutropenia and febrile neutropenia in patients with gynecologic malignancy. Anti-Cancer Drugs, 26(10), 1054–1060. https://doi.org/10.1097/cad.0000000000000279

Hoggatt, J., Tate, T., & Pelus, L. M. (2015). Role of lipegfilgrastim in the management of chemotherapy-induced neutropenia. International Journal of Nanomedicine, 10, 2647. https://doi.org/10.2147/ijn.s55796

Howell, P. B., Walters, P. E., Donowitz, G. R., & Farr, B. M. (1995). Risk factors for infection of adult patients with cancer who have tunnelled central venous catheters. Cancer, 75(6), 1367–1375. https://doi.org/10.1002/1097-0142(19950315)75:6

Islas-Muñoz, B., Volkow-Fernández, P., Ibanes-Gutiérrez, C., Villamar-Ramírez, A., Vilar-Compte, D., & Cornejo-Juárez, P. (2018). Bloodstream infections in cancer patients: Risk factors associated with mortality. International Journal of Infectious Diseases, 71, 59–64. https://doi.org/10.1016/j.ijid.2018.04.024

José, R. J., & Brown, J. S. (2012). Opportunistic and fungal infections of the lung. Medicine, 40(6), 335–339. https://doi.org/10.1016/j.mpmed.2012.03.013

Kawasaki, Y., Kimura, S., Nakano, H., Mashima, K., Shirato, Y., Kawaguchi, S., Toda, Y., Ochi, S., Nagayama, T., Minakata, D., Yamasaki, R., Morita, K., Ashizawa, M., Yamamoto, C., Hatano, K., Sato, K., Oh, I., Fujiwara, S., Ohmine, K., … Kanda, Y. (2019, January 25). Comparison of neutropenia profiles in different treatment protocols for acute myeloid leukemia using the D-index. International Journal of

Hematology. https://doi.org/10.1007/s12185-019-02593-2

Lalami, Y., Paesmans, M., Muanza, F., Barette, M., Plehiers, B., Dubreucq, L., Georgala, A., & Klastersky, J. (2006). Can we predict the duration of chemotherapy-induced neutropenia in febrile neutropenic patients, focusing on regimen-specific risk factors? A retrospective analysis. Annals of Oncology, 17(3), 507–514. https://doi.org/10.1093/annonc/mdj092

Liu, Z., Liu, T., Zhang, X., Si, X., Wang, H., Zhang, J., Huang, H., Sun, X., Wang, J., Wang, M., & Zhang, L. (2020). Opportunistic infections complicating immunotherapy for non-small cell lung cancer. Thoracic Cancer, 11(6), 1689–1694. https://doi.org/10.1111/1759-7714.13422

Lubwama, M., Phipps, W., Najjuka, C. F., Kajumbula, H., Ddungu, H., Kambugu, J. B., & Bwanga, F. (2019). Bacteremia in febrile cancer patients in Uganda. BMC Research Notes, 12, 4–9. https://doi.org/10.1186/s13104-019-4249-9

Marchetti, O., Tissot, F., & Calandra, T. (2017). Infections in the cancer patient. In Infectious diseases (4th ed., pp. 723–738). Elsevier Ltd.

Ministry of Health, Maldives. (2021). Maldives health statistics, 2020. Retrieved from https://health.gov.mv/storage/uploads/BkoMELod/utbdxbkp.pdf

Mohammed, A. A., Al-Zahrani, A. S., Sherisher, M. A., Alnagar, A., Elshentenawy, A., & El-Kashif, A. T. (2014). The pattern of infection and antibiotics use in terminal cancer patients. Journal of the Egyptian National Cancer Institute, 26(3), 147–152. https://doi.org/10.1016/j.jnci.2014.05.002

Nesher, L., & Rolston, K. V. I. (2014). The current spectrum of infection in cancer patients with chemotherapy-related neutropenia. Infection, 42, 5–13. https://doi.org/10.1007/s15010-013-0525-9

Neutropenia. (2023, February 17). Cancer.Net. https://www.cancer.net/coping-with-cancer/physical-emotional-and-social-effects-cancer/managing-physical-side-effects/neutropenia

Nissen, J. C., Hummel, M., Brade, J., Kruth, J., Hofmann, W.-K., Buchheidt, D., & Reinwald, M. (2014, July 3). The risk of infections in hematologic patients treated with rituximab is not influenced by cumulative rituximab dosage: A single center experience. BMC

Infectious Diseases. BioMed Central. https://doi.org/10.1186/1471-2334-14-364

Okera, M., Chan, S. Y., Dernede, U., Larkin, J., Popat, S., Gilbert, D. C., Jones, L. M., Osuji, N., Sykes, H., Oakley, C., Pickering, L., Fj, L., & Chowdhury, S. (2010). A prospective study of chemotherapy-induced febrile neutropenia in the South West London Cancer Network.

Interpretation of study results in light of NCAG/NCEPOD findings. British Journal of Cancer, 104(3), 407–412. https://doi.org/10.1038/sj.bjc.6606059

Okunaka, M., Kano, D., Matsui, R., Kawasaki, T., & Uesawa, Y. (2021). Comprehensive Analysis of Chemotherapeutic Agents That Induce Infectious Neutropenia. Pharmaceuticals, 14(7), 681. https://doi.org/10.3390/ph14070681

Opportunistic infections | Living with HIV | HIV Basics | HIV/AIDS | CDC. (n.d.). Centers for Disease Control and Prevention. Retrieved February 2, 2023, from https://www.cdc.gov/hiv/basics/livingwithhiv/opportunisticinfections.html

Pispero, A., Lombardi, N., Manfredi, M., Varoni, E. M., Sardella, A., & Lodi, G. (2022, September 29). Oral infections in oral cancer survivors: A mini-review. Frontiers. https://www.frontiersin.org/articles/10.3389/froh.2022.970074/full

Rahman, Z., Esparza-Guerra, L., Yap, H., Fraschini, G., Bodey, G., & Hortobagyi, G. (1997). Chemotherapy-induced neutropenia and fever in patients with metastatic breast carcinoma receiving salvage chemotherapy. Cancer, 79. https://doi.org/10.1002/(SICI)1097-0142(19970315)79:6<1150::AID-CNCR13>3.0.CO;2-Z

Ramon-Lopez, A., Nalda-Molina, R., Valenzuela, B., & Pérez-Ruixo, J. J. (2009). Semi-mechanistic model for neutropenia after high dose of chemotherapy in breast cancer patients. Pharmaceutical Research, 26(8), 1952–1962. https://doi.org/10.1007/s11095-009-9910-6

Rapoport, B. L., Cooksley, T., Johnson, D. B., Anderson, R. L., & Shannon, V. R. (2021). Treatment of infections in cancer patients: An update from the neutropenia, infection and myelosuppression study group of the Multinational Association for Supportive Care in Cancer (MASCC). Expert Review of Clinical Pharmacology, 14(3), 295–313. https://doi.org/10.1080/17512433.2021.1884067

Santos, A. L. S. D., Rodrigues, Y. C., De Melo, M. V. H., Santos, P. a. S. D., Da Costa Oliveira, T. N., Sardinha, D. M., Lima, L. N. G. C., Brasiliense, D. M., & Lima, K. V. B. (2020). First insights into clinical and resistance features of infections by Klebsiella pneumoniae among oncological patients from a referral center in Amazon Region, Brazil. Infectious Disease Reports, 12(3), 110–120. https://doi.org/10.3390/idr12030021

Sapkota, B., Shrestha, R., Chapagai, S., Shakya, D. K., & Bista, P. (2020). Validation of risk of chemotherapy-induced neutropenia: Experience from Oncology Hospital of Nepal. Cancer Management and Research, 12, 3751–3758. https://doi.org/10.2147/cmar.s243916

Singh, G. K., Capoor, M. R., Nair, D., & Bhowmik, K. T. (2017). Spectrum of fungal infection in head and neck cancer patients on chemoradiotherapy. Journal of Egypt National Cancer Institute, 29, 33–37.

Taur, Y., & Pamer, E. G. (2016, April 18). Microbiome mediation of infections in the cancer setting. Genome Medicine. BioMed Central. https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-016-0306-z

Terrones-Campos, C., Ledergerber, B., Specht, L., Vogelius, I., Helleberg, M., & Lundgren, J. D. (2022). Risk of bacterial, viral, and fungal infections in patients with solid malignant tumors treated with curative intent radiation therapy. Advances in Radiation Oncology, 7(6), 100950. https://doi.org/10.1016/j.adro.2022.100950

Thai, V., Lau, F., Wolch, G., Yang, J., Quan, H., & Fassbender, K. (2012). Impact of infections on the survival of hospitalized advanced cancer patients. Journal of Pain and Symptom Management, 43(3), 549–557. https://doi.org/10.1016/j.jpainsymman.2011.04.010

Vaillant, A. A. J. (2022, August 25). Neutropenia. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK507702/

Vento, S., & Cainelli, F. (2003). Infections in patients with cancer undergoing chemotherapy: Aetiology, prevention, and treatment. The Lancet Oncology, 4(10), 595–604. https://doi.org/10.1016/s1470-2045(03)01218-x

View of healthcare-associated infections in patients who are immunosuppressed due to chemotherapy treatment: A narrative review. (n.d.). Journal of Infection and Public Health. https://jidc.org/index.php/journal/article/view/36753643/2971

Was, H., Borkowska, A., Bagues, A., Tu, L., Liu, J. Y. H., Lu, Z., ... Abalo, R. (2022, March 28). Mechanisms of chemotherapy-induced neurotoxicity. Frontiers in Pharmacology. Frontiers Media S.A. https://doi.org/10.3389/fphar.2022.750507

Yang, B., & Kido, A. (2011b). Pharmacokinetics and pharmacodynamics of pegfilgrastim. Clinical Pharmacokinetics, 50(5), 295–306. https://doi.org/10.2165/11586040-000000000-00000

Yang, P., Zheng, Y., Chen, J., Ma, H., Yu, K., Chen, Y., Yang, Y., & Wu, B. (2021). Immediate risk of non-cancer deaths after a cancer diagnosis. BMC Cancer, 21(1). https://doi.org/10.1186/s12885-021-08707-6

Zembower, T. (2014c). Epidemiology of infections in cancer patients. In Cancer treatment and research (pp. 43–89). https://doi.org/10.1007/978-3-319-04220-6_2

Zheng, Y., Chen, Y., Yu, K., Yang, Y., Wang, X., Yang, X., Qian, J., Liu, Z.-X., & Wu, B. (2021). Fatal infections among cancer patients: A population-based study in the United States. Infectious Diseases and Therapy, 10(2), 871–895. https://doi.org/10.1007/s40121-021-00433-7

Downloads

Published

2025-12-31

How to Cite

Chemotherapy-Induced Opportunistic Infection Among Cancer Patients Treated in the Oncology Unit of the Main Tertiary Hospital in the Maldives. (2025). The Maldives National Journal of Research, 13(2), 20-42. https://doi.org/10.62338/q4gwha68